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Noise, order, and spatiotemporal intermittency

H. L. Yang,1,2 Z. Q. Huang,2 and E. J. Ding1,2,3

1China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100 080, China
2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, China

3Institute of Theoretical Physics, Academia Sinica, Beijing 100 080, China
~Received 18 December 1996; revised manuscript received 13 May 1997!

In a large array of globally coupled random bistable units, an ordered phase can appear at an intermediate
noise strength. In company with the appearance of the ordered phase, super transients and spatiotemporal
intermittencies can be found. The analysis based on a mean-field theory shows that the appearance of a
fascinating ordered phase is caused by a phenomenon named the array enhanced tunnel crisis resulting from
the nontrivial cooperative effect of the noise, the nonlinearity, and the coupling among units.
@S1063-651X~97!51109-3#
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Complex systems, ranging from economic markets a
ecosystems to earthquakes and the turbulent flow, have
erated a lot of research interest in recent years. The m
striking feature of many composite systems containing
large number of elements is that fascinating global phen
ena arise out of seemingly simple local dynamics. Furth
more, fluctuations, such as thermal and quantum noises
intrinsic in dynamical systems. It is then of considerable i
portance to investigate the influence of noises on such
tially extended systems. Recent results have afford a glim
into the richness of the behavior that is possible in la
arrays of noise coupled oscillators@1–6#. A novel phenom-
enon named noise-induced nonequilibrium phase trans
was reported by Van den Broeck, Parrondo, and Toral@1#.
Such a phase transition is characterized by a breaking
ergodicity and the appearance of multiple stable states.
is different from the so-called noise-induced transition@7–9#,
in which only the shape of a probability density chang
qualitatively under the influence of noises. A related wo
done by Linderet al. is about the array enhanced stochas
resonance and the spatiotemporal synchronization@2#. Both
of the two groups have shown evidence for the appearanc
a noise-induced ordered phase, which cannot be observ
the absence of noises. We attempt to give a direct phys
interpretation of the mechanism for this phase transition
this paper, we try to use a chain of globally coupled rand
bistable units as a special case to shed some light on
subject. Numerical calculations show that, with increas
noise strength, an ordered phase appears at a critical val
the noise strength. In this phase, all the units in the ar
evolve to a certain one of two coexisting states, while
units are attracted to the other one. With further increa
noise strength, this ordered phase is destroyed. Units sw
cooperatively between the two states. The time interval
tween two consecutive switches becomes shorter and sh
with an increase of noise strength, and the system will fina
reenter a disorder phase. The analysis based on a kin
mean field theory shows that the ordered phase and the
companying spatiotemporal intermittency are induced b
phenomenon named the array enhanced tunnel crisis, w
results from the cooperative effect between the noise,
nonlinearity, and the coupling among units.
561063-651X/97/56~3!/2355~4!/$10.00
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The model we have studied is just a globally coupl
random map lattice,

yn11
~ i ! 5~12e!F~yn

~ i ! ,zn
~ i !!1e ȳn , ~1!

wheren is the discrete time step,i is the lattice point index,
e represents the coupling strength,zn

( i ) can be a random vari
able influencing the dynamics at sitei , and ȳn is the spatio-
average defined by

ȳn5
1

N (
i 51

N

F~yn
~ i ! ,zn

~ i !!5
1

N (
i 51

N

yn11
~ i ! . ~2!

This type of model might be motivated in part by conside
ing a hypothetical physical situation in which a system co
sisting ofN identical units is embedded in a noisy enviro
ment.

For simplicity, we use the randomly shifted piecewise li
ear map as the local dynamics,

F~yn
~ i ! ,zn

~ i !!5 f ~yn
~ i !!1zn

~ i ! ~mod 1!, ~3!

where

f ~y!5
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5
<y,1,

~4!

zn
~ i !5bxn

~ i ! . ~5!

b is a positive real constant,xn
( i ) is a series of random num

bers homogeneously distributed in the interval@21,1#, and it
satisfies that̂ xn

( i )xm
( j )&;dmnd i j . It can easily be seen that
R2355 © 1997 The American Physical Society
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single piecewise linear map~3! has two coexisting stable
statesy1

s5 1
3 and y2

s5 2
3 without the influence of the random

noise ~see Fig. 1!. With an increase of noise strength, tw
states are blurred into two bands correspondingly. The m
function ~3! will be tangent with the 45° line occasionally a
point A ~or B! when the noise strength reaches a criti

valuebc5 1
15 . After that, a narrow tunnel appears somewh

between the map function and the 45° line. Then, ph
points are able to switch between two bands randomly. T
is the ‘‘tunnel crisis’’ reported in Ref.@10#. Without loss of
generality, we will use the case of coupling strengthe50.2
as an example to show you below what happens when a l
array of such units are coupled globally together.

Numerical calculations show that for randomly selec
initial conditions three different types of behaviors can
found in globally coupled units during a slow increase
noise strength. For weak noise strengths, units evolve
certain ‘‘preselected’’ band and stay there forever, just
they do not feel the coupling among them@see Fig. 2~a!#. We
call this behavior the quenched disordered phase, since
a unit evolves to a certain band it stays there forever an
random selection of initial conditions makes each unit evo
ing to one of two different bands at random. For the numb
of units evolving to the two bands are equal, this phase
spatiohomogeneous one with a spatial averageȳn50.5. For
an intermediate noise strength, units starting from rand
initial conditions first evolve into two groups and form tw
bands respectively. After a long period of two-band evo
tion, units in a certain band jump one by one into the ot
band till all units in the whole array are in the same ba
After that, all units are confined to this band without sprea
ing or switching to the other band@see Fig. 2~b!#. In this
phase we have the spatial averageȳn5 1

3 or ȳn5 2
3 for differ-

ent initial conditions. It is the symmetry-breaking order
phase. With further stronger noise strengths, the orde
phase also loses its stability. After a period of transient p
cess, the whole array evolves into one band just as in
ordered phase. But all units cannot stay in this band fore

FIG. 1. The piecewise linear map~1! with e50.0. The three
curves are calculated from 1,yn115 f (yn); 2, yn115 f (yn)1b; 3,
yn115 f (yn)2b, respectively.
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Instead, they will switch between two bands randomly. T
is the phase named spatiotemporal intermittency@see Fig.
2~c!#. It does not have a stationary spatial averageȳn : in
case the array switches from one band to the other,ȳn will
change its value correspondingly. The time interval betwe
two consecutive switches becomes shorter and shorter
the increase of noise strength. For a large enough n
strengthb, all units will switch between the two bands ver
frequently and even spread to cover them. The system en
a disordered phase again.

It can easily be seen that the map function~4! is sym-

metrical with respect to the point (1
2 , 1

2 ), i.e.,
1
2 1 f (y2 1

2 )5 1
2 2 f ( 1

2 2y). In addition, initial conditions are
homogeneously distributed in the interval@0,1#. Why can a
symmetry-breaking ordered phase appear in this system
an intermediate noise strength? In order to clarify the mec
nism, we shall just consider a single unit in the array a
view the influence of other ones on it as a random envir
ment @1#. Then, the map~1! can be transformed into

yn115 f ~yn!1wn , ~6!

where

wn5zn~12e!1e@ ȳn2 f ~yn!#. ~7!

Since only one site is considered, here and below, all
superscripts are omitted for simplicity. The map~6! is just of
the same form as the randomly shifted piecewise linear m
~3!. The only difference is that the ‘‘noise’’wn here consists
of two terms. One iszn(12e), which is of determined
strengthb(12e), just aszn in map ~3!. The other term is
e@ ȳn2 f (yn)# whose strength varies with the deviatio
ȳn2 f (yn). We would like to call it the ‘‘feedback noise.’’ It
will be shown below that it is the ‘‘feedback noise’’ tha
brings about the symmetry-breaking ordered phase and
spatiotemporal intermittency.

For large enough noise strength, units starting from r
domly selected initial conditions homogeneously distribu
in the interval@0,1# first evolve into two groups and form
two bands respectively. Since the numbers of points evolv
to the two bands are equal statistically, the spatial averag

the variableyn is ȳn5 1
2 . For a point in the lower band@11#,

the driving ‘‘noise’’ wn is of strengthb(12e)1e( 1
2 2 1

3 ).
Just as the case in map~3!, the map function~6! may tangent
occasionally with the 45° line when the noise strength sa
fies the condition

b~12e!1e~ 1
2 2 1

3 !5 1
15 . ~8!

It gives a critical curve in the (b,e) plane. After that, a
narrow tunnel appears occasionally between the map~6! and
the 45° line. Then, phase points can jump from one band
the other one occasionally. We call this jump the array
hanced tunnel crisis. It provides for the probability of pha
points to jump from one band to the other. For paramet
above the curve~8!, the quenched disordered phase is d
stroyed by the array enhanced tunnel crisis. In case of st
tic fluctuations, the numbers of points in the two bands m
become unequal after a period of jumping. Then, the spa
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FIG. 2. The temporal evolution of the random map lattices~1!.
Abscissa is iteration stepn and ordinate is variableyn

( i ) . Values of
yn

( i ) for all the units in the array have been plotted in the sa
figure. The parameter setting ise50.2, N516, andB515b here.
~a! The quenched disordered phase forB50.35 ~plotted every
10 000th step!; ~b! The symmetry-breaking ordered phase f
B50.9 ~plotted every 1000th step!; ~c! The spatiotemporal intermit
tency forB51.8 ~plotted every 1000th step!.
average ofyn will not be 1
2 now. If we denote the fraction o

points in the lower band asnL , the spatial average is

ȳ5 1
3 nL1 2

3 ~12nL!5 1
2 2 1

3 ~nL2 1
2 !. ~9!

By inserting Eq.~9! into Eq. ~7!, the strengthbf of the
‘‘feedback’’ term in wn can be obtained,

bf5H 1

6
2

1

3 S nL2
1

2D for f ~yn! in the lower band

1

6
1

1

3 S nL2
1

2D for f ~yn! in the upper band.

~10!

It is different for phase points in the two bands~see Fig. 3!.
Then, jumping of phase points between two bands in t
directions cannot be symmetric now. Without loss of gen
ality, we assume that the number of points in the upper b
is larger than that in the lower band, i.e.,nL, 1

2. The strength
of the ‘‘noise’’ wn for points in the lower band is

b(12e)1e@ 1
6 1 1

3 ( 1
2 2nL)#, which is greater than the

strengthb(12e)1e@ 1
6 2 1

3 ( 1
2 2nL)# for points in the upper

band. It is obvious that, for a stronger noise, the tunn
between the map function and the 45° line has a larger p
ability to appear and have a larger width. As a result, poi
in the lower band can jump more easily to the upper band
the tunnel, while jumping of points in the upper band to t
lower band is more difficult. This difference of jumpin
probably in two directions gives a net flow of phase poin
from the lower band to the upper band. Appearance of
net flow makes the difference in probability of jumping
two directions more acute, and even no points can jump fr
the upper band to the lower band for small enoughnL . Fi-
nally, all the units are in the upper band. This is t
symmetry-breaking ordered phase. In this phase, the stre

e

FIG. 3. The phase diagram of the coupled random map lat
~1!. The two curves 1, 2 are calculated from Eqs.~8! and ~11!
respectively. The three phases are I the quenched disordered p
II the symmetry-breaking ordered phase, III the spatiotemporal
termittency phase. Just above curve 1, a super long two-band
sient iteration can be observed. The three points denoted by
and c correspond to the cases plotted in Fig. 2.
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of ‘‘noise’’ wn is b(12e). Sinceb(12e) is smaller than
1
15 for not very strong noise, no tunnel can appear betw
the map function~6! and the 45° line. So, once the who
array has entered a certain band, phase points will confi
in that band. In other words, the ordered phase we get he
a structurally stable one.

For even stronger noise, the ordered phase becomes

stable whenb(12e). 1
15 . The critical values of parameter

form the other curve

b~12e!5 1
15 ~11!

in the phase plane (b,e). For parameters above this curv
phase points will switch randomly between the two ban
instead of being confined in one band. The reason is t
even for the case that all the units lie in the same ban
tunnel can appear between the map function~6! and the 45°
line now. Then, there may be points escaping from the b
where they originally stayed. After the first point’s escapin
escape of other ones becomes a little easier and easier.
to this accelerating effect, more and more points escape.
appearance of points in the other band is due to stat
fluctuations. Once the fraction of points in the other band
greater than1

2 , the net flow will reverse its direction. Now
phase points tend to jump to this band and stay there. A
result, all the units in the array jump to the band eventua
And so on, all the units in the array switch between the t
bands coherently.

Numerical calculations show that statistic average of
time intervalt between two consecutive switches behaves

^t&;exp~Nd2g!, ~12!

whereN is the system size,d5b2bc is the deviation of the
noise strength from its critical value andg is a critical expo-
ys
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nent. For our model the critical exponentg50.5. Similar
behavior for the length of the two-band transient process
be found just beyond the critical curve~8!.

Finally, we make some remarks below as a conclusi
First, in a chain of globally coupled random units,
symmetry-breaking ordered phase and accompanying
tiotemporal intermittency can be observed for a intermed
noise strength. Second, this transition possesses some
tures of the first-order phase transition such as the sud

appearance of a nonzero ordered-parameter, which isu ȳ2 1
2 u

in our model. On the other hand, near critical curves~8! and
~11!, perfect scaling relations such as~12! can be found
which is the characteristic feature of a second-order tra
tion. And the appearance of the intermittency behavior i
characteristic feature of a dynamic system. All these indic
that the transition to an ordered phase in our model i
purely nonequilibrium phenomenon. Third, theoretical ana
sis and numerical calculations have shown that the orde
phase and the spatiotemporal intermittency observed are
transient phenomena. Finally, we would like to presume t
the mechanism of the transition here is the same as tha
Ref. @1#, since the mean field coupling among units, whi
brings about the ‘‘feedback noise’’ in the effective model,
the common feature of the two systems. The difference
tween the two cases is that the system presented in this p
has two coexisting state without the noise, while the t
coexisting states of the system in Ref.@1# are induced by
external noise.
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