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Noise, order, and spatiotemporal intermittency
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In a large array of globally coupled random bistable units, an ordered phase can appear at an intermediate
noise strength. In company with the appearance of the ordered phase, super transients and spatiotemporal
intermittencies can be found. The analysis based on a mean-field theory shows that the appearance of a
fascinating ordered phase is caused by a phenomenon named the array enhanced tunnel crisis resulting from
the nontrivial cooperative effect of the noise, the nonlinearity, and the coupling among units.
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PACS numbd(s): 05.45+b

Complex systems, ranging from economic markets and The model we have studied is just a globally coupled
ecosystems to earthquakes and the turbulent flow, have gerandom map lattice,
erated a lot of research interest in recent years. The most 0 W) i, —
striking feature of many composite systems containing a Yne1= (1= €)F(yy'.zy") + €Yy, (1)

large number of elements is that fascinating global phenon\?vheren is the discrete time step,is the lattice point index

ena arise out of seemingly simple local dynamics. Further- . ) )
. . e represents the coupling strengzﬁ, can be a random vari-
more, fluctuations, such as thermal and quantum noises, ar

intrinsic in dynamical systems. It is then of considerable im-a%Ie mﬂugnf(_:m%tge dynamics at siteandy,, is the spatio-
portance to investigate the influence of noises on such Spg_verage efined by

tially extended systems. Recent results have afford a glimpse 1 N 1 N
into the richness of the behavior that is possible in large WZN Z F(yg),zw)zﬁ ;1 yh . )

arrays of noise coupled oscillatof$—6]. A novel phenom-

enon named noise-induced nonequilibrium phase transitionh. f model miaht b . di b id
was reported by Van den Broeck, Parrondo, and TEghl ) 1IS type of model might be motivated in part by consider-

Such a phase transition is characterized by a breaking df_'g a hypo‘he“c"’?' physi_cal_ situation in W.hiCh a_system_ con-
ergodicity and the appearance of multiple stable states. Th2Sting OfN identical units is embedded in a noisy environ-
is different from the so-called noise-induced transifigag, ~ ™Ment , , o
in which only the shape of a probability density changes For simplicity, we use the _randomly shifted piecewise lin-
qualitatively under the influence of noises. A related work€a' Map as the local dynamics,

done by Linderet al. is about the array enhanced stochastic (i) Sy — £7y,00) ()

resonance and the spatiotemporal synchronizd@dnBoth Fyn' zn)=flyn)+2," (mod D, ©
of the two groups have shown evidence for the appearance Qfhere
a noise-induced ordered phase, which cannot be observed in

the absence of noises. We attempt to give a direct physical ( 5y
interpretation of the mechanism for this phase transition. In

this paper, we try to use a chain of globally coupled random

bistable units as a special case to shed some light on this

subject. Numerical calculations show that, with increased

noise strength, an ordered phase appears at a critical value of

the noise strength. In this phase, all the units in the array f(y)
evolve to a certain one of two coexisting states, while no

units are attracted to the other one. With further increased

noise strength, this ordered phase is destroyed. Units switch

cooperatively between the two states. The time interval be-

tween two consecutive switches becomes shorter and shorter 5_y _ E if
with an increase of noise strength, and the system will finally \ 3 3
reenter a disorder phase. The analysis based on a kind of ) )
mean field theory shows that the ordered phase and the ac- Zﬂ)=bxf1')- (5
companying spatiotemporal intermittency are induced by a _

phenomenon named the array enhanced tunnel crisis, whidhis @ positive real constant’ is a series of random num-
results from the cooperative effect between the noise, theers homogeneously distributed in the interfvall, 1], and it
nonlinearity, and the coupling among units. satisfies tha{x{"x{)))~ .8 . It can easily be seen that a
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1.0

Instead, they will switch between two bands randomly. This
is the phase named spatiotemporal intermittefgge Fig.
2(c)]. It does not have a stationary spatial avergge in

~ 08 case the array switches from one band to the othewyill

Eﬂ change its value correspondingly. The time interval between
N two consecutive switches becomes shorter and shorter with
= 06 the increase of noise strength. For a large enough noise
:>\"*' strengthb, all units will switch between the two bands very
= frequently and even spread to cover them. The system enters

N
S

a disordered phase again.
It can easily be seen that the map functi@n is sym-

metrical with respect to the point 1(3), i.e.,
s+f(y—3)=3—f(3—y). In addition, initial conditions are
homogeneously distributed in the interJal,1]. Why can a
symmetry-breaking ordered phase appear in this system for

0.2

0.0
0.0 0.2 0.4 086 0.8 1.0 an intermediate noise strength? In order to clarify the mecha-
yn(‘) nism, we shall just consider a single unit in the array and

view the influence of other ones on it as a random environ-
FIG. 1. The piecewise linear maf) with e=0.0. The three ment[1]. Then, the magi1) can be transformed into

curves are calculated from ¥, 1=1(yn); 2, Ynr1=F(y,) +b; 3, B
Yn+1=T(yn) —b, respectively. Yn+1=F(Yn) T Wy, (6)
single piecewise linear maf8) has two coexisting stable where
statesy; =3 andy5=$ without the influence of the random
noise (see Fig. 1 With an increase of noise strength, two
states are blurred into two bands correspondingly. The ma

function (3) will be tangent wi_th the 45° line occasionally .at superscripts are omitted for simplicity. The mé is just of
point A (or B) when the noise strength reaches a criticaly,e same form as the randomly shifted piecewise linear map
valueb, = 15. After that, a narrow tunnel appears somewhere(3). The only difference is that the “noiseii, here consists
between the map function and the 45° line. Then, phasef two terms. One isz,(1—¢€), which is of determined
points are able to switch between two bands randomly. Thistrengthb(1—€), just asz, in map (3). The other term is
is the “tunnel crisis” reported in Ref.10]. Without loss of  ¢[y,—f(y,)] whose strength varies with the deviation
generality, we will use the case of coupling strength0.2 'y —f(y,). We would like to call it the “feedback noise.” It
as an example to show you below what happens when a larggill be shown below that it is the “feedback noise” that
array of such units are coupled globally together. brings about the symmetry-breaking ordered phase and the
Numerical calculations show that for randomly selectedspatiotemporal intermittency.
initial conditions three different types of behaviors can be For large enough noise strength, units starting from ran-
found in globally coupled units during a slow increase ofdomly selected initial conditions homogeneously distributed
noise strength. For weak noise strengths, units evolve to @ the interval[0,1] first evolve into two groups and form
certain “preselected” band and stay there forever, just aswo bands respectively. Since the numbers of points evolving
they do not feel the coupling among thésee Fig. 28)]. We  to the two bands are equal statistically, the spatial average of

call this behavior the quenched disordered phase, since onge, variabley, is y.=&. For a point in the lower banf.1]
a unit evolves to a certain band it stays there forever and a noeon 2 N

random selection of initial conditions makes each unit evoly-N€ driving “noise” w, is of strengthb(1—e)+€(3—3).

ing to one of two different bands at random. For the numberdust as the case in m&p), the map functiont6) may tangent
of units evolving to the two bands are equal, this phase is gccasmnally y\{lth the 45° line when the noise strength satis-
spatiohomogeneous one with a spatial avenage0.5. For  fies the condition

an intermediate noise strength, units starting from random

initial conditions first evolve into two groups and form two b(1—e€)+e(5 — 3)= 5. )
bands respectively. After a long period of two-band evolu-

tion, units in a certain band jump one by one into the othelt gives a critical curve in thel{,e) plane. After that, a
band till all units in the whole array are in the same band.narrow tunnel appears occasionally between the (6apnd
After that, all units are confined to this band without spreadthe 45° line. Then, phase points can jump from one band to
ing or switching to the other banjdee Fig. &)]. In this  the other one occasionally. We call this jump the array en-
phase we have the spatial average= 3 or y,,=5 for differ-  hanced tunnel crisis. It provides for the probability of phase
ent initial conditions. It is the symmetry-breaking orderedpoints to jump from one band to the other. For parameters
phase. With further stronger noise strengths, the orderedbove the curve8), the quenched disordered phase is de-
phase also loses its stability. After a period of transient prostroyed by the array enhanced tunnel crisis. In case of statis-
cess, the whole array evolves into one band just as in thac fluctuations, the numbers of points in the two bands may
ordered phase. But all units cannot stay in this band forevebecome unequal after a period of jumping. Then, the spatial

Wi =2n(1— &)+ e[ya—f(yn)]- (7

Bince only one site is considered, here and below, all the
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FIG. 2. The temporal evolution of the random map latticBs
Abscissa is iteration step and ordinate is variablg! . Values of

y) for all the units in the array have been plotted in the sam

figure. The parameter setting és=0.2, N=16, andB=15b here.
(@ The quenched disordered phase ®+0.35 (plotted every

€

0.4

0.2

FIG. 3. The phase diagram of the coupled random map lattice
(1). The two curves 1, 2 are calculated from E¢8) and (11)
respectively. The three phases are | the quenched disordered phase,
Il the symmetry-breaking ordered phase, Il the spatiotemporal in-
termittency phase. Just above curve 1, a super long two-band tran-
sient iteration can be observed. The three points denoted by a, b,
and c correspond to the cases plotted in Fig. 2.

average ofy,, will not be 3 now. If we denote the fraction of
points in the lower band ag,_, the spatial average is

y=sn+5(1-n)=3—3(n_—3). 9

By inserting Eq.(9) into Eq. (7), the strengthb; of the
“feedback” term inw,, can be obtained,

11 1
b 573 ( n.— E) for  f(yn) inthe lower band
=
11 1 .
T3 N E) for  f(y,) in the upper band.

(10

It is different for phase points in the two ban@e Fig. 3.
Then, jumping of phase points between two bands in two
directions cannot be symmetric now. Without loss of gener-
ality, we assume that the number of points in the upper band
is larger than that in the lower band, i.,,< 3. The strength

of the “noise” w, for points in the lower band is
b(1—e€)+e[3+3(3—n.)], which is greater than the
strengthb(1—e€)+ €[ — 3(3—n,)] for points in the upper
band. It is obvious that, for a stronger noise, the tunnel,
between the map function and the 45° line has a larger prob-
ability to appear and have a larger width. As a result, points
in the lower band can jump more easily to the upper band via
the tunnel, while jumping of points in the upper band to the
lower band is more difficult. This difference of jumping
probably in two directions gives a net flow of phase points
from the lower band to the upper band. Appearance of the
net flow makes the difference in probability of jumping in
two directions more acute, and even no points can jump from

10 000th step (b) The symmetry-breaking ordered phase for the upper band to the lower band for small enongh Fi-

B=0.9 (plotted every 1000th ste¢p(c) The spatiotemporal intermit-

tency forB=1.8 (plotted every 1000th stgp

nally, all the units are in the upper band. This is the
symmetry-breaking ordered phase. In this phase, the strength
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of “noise” w, is b(1—¢€). Sinceb(1—¢) is smaller than nent. For our model the critical exponemt=0.5. Similar

# for not very strong noise, no tunnel can appear betweebehavior for the length of the two-band transient process can

the map function(6) and the 45° line. So, once the whole be found just beyond the critical cury8).

array has entered a certain band, phase points will confined Finally, we make some remarks below as a conclusion.

in that band. In other words, the ordered phase we get here fSrst, in a chain of globally coupled random units, a

a structurally stable one. symmetry-breaking ordered phase and accompanying spa-
For even stronger noise, the ordered phase becomes Ufiotemporal intermittency can be observed for a intermediate

stable wherb(1—¢€)> 5. The critical values of parameters noise strength. Second, this transition possesses some fea-

form the other curve tures of the first-order phase transition such as the sudden

appearance of a nonzero ordered-parameter, whiph-is |
in our model. On the other hand, near critical curi@sand

in the phase planeb(e). For parameters above this curve, (11, perfect scaling relations such &$2) can be found
phase points will switch randomly between the two bandé’Yh'Ch is the characteristic featurg of a.second-order. tra_n5|—
instead of being confined in one band. The reason is thation. And the appearance of the intermittency behavior is a
even for the case that all the units lie in the same band, §haracteristic feature of a dynamic system. All these indicate
tunnel can appear between the map funct®nand the 45° that the transition to an ordered phase in our model is a
line now. Then, there may be points escaping from the bangurely nonequilibrium phenomenon. Third, theoretical analy—
where they originally stayed. After the first point’s escaping,sis and numerical calculations have shown that the ordered
escape of other ones becomes a little easier and easier. DRBase and the spatiotemporal intermittency observed are not
to this accelerating effect, more and more points escape. TH&ansient phenomena. Finally, we would like to presume that
appearance of points in the other band is due to statistithe mechanism of the transition here is the same as that in
fluctuations. Once the fraction of points in the other band idRef. [1], since the mean field coupling among units, which
greater tharg, the net flow will reverse its direction. Now, brings about the “feedback noise” in the effective model, is
phase points tend to jump to this band and stay there. As e common feature of the two systems. The difference be-
result, all the units in the array jump to the band eventuallyfween the two cases is that the system presented in this paper
And so on, all the units in the array switch between the twohas two coexisting state without the noise, while the two
bands coherently. coexisting states of the system in Rgf] are induced by
Numerical calculations show that statistic average of theexternal noise.
time interval T between two consecutive switches behaves as

b(l—e)= 1 (17
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